Optimizing the Pairs-Trading Strategy Using Deep Reinforcement Learning with Trading and Stop-Loss Boundaries
نویسندگان
چکیده
منابع مشابه
Deep Reinforcement Learning for Pairs Trading
Reinforcement learning (RL) [1] differs from traditional supervised machine learning in the sense that it not only considers short-term consequences of actions/decisions, but also long-term outcomes. Because of recent advances in deep learning, model-free deep reinforcement learning (DRL) has proven successful in various applications, as with the success of a deep Q-network (DQN) in the Atari g...
متن کاملA Pairs Trading Strategy for Goog/googl Using Machine Learning
bag of related financial instruments to make profits by exploiting their relations. One important feature of pairs trading is that it is market-neutral, which is particularly appealing in the current volatile and unpredictable macro-economic environments. In this project, we will use the spread model, the O-U meanreverting model, and SVM to build a trading strategy and apply the strategy to GOO...
متن کاملReinforcement Learning for Trading
We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results that demonstrate the advantages of reinforcement learning relative to supervised ...
متن کاملTrading the Twitter Sentiment with Reinforcement Learning
This paper is to explore the possibility to use alternative data and artificial intelligence techniques to trade stocks. The efficacy of the daily Twitter sentiment on predicting the stock return is examined using machine learning methods. Reinforcement learning(Q-learning) is applied to generate the optimal trading policy based on the sentiment signal. The predicting power of the sentiment sig...
متن کاملDeep reinforcement learning for time series: playing idealized trading games
Deep Q-learning is investigated as an end-to-end solution to estimate the optimal strategies for acting on time series input. Experiments are conducted on two idealized trading games. 1) Univariate: the only input is a wave-like price time series, and 2) Bivariate: the input includes a random stepwise price time series and a noisy signal time series, which is positively correlated with future p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2019
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2019/3582516